miércoles, 30 de noviembre de 2011
La espiral de Teodoro
La espiral que aparece arriba se conoce con el nombre de "espiral de Teodoro" y constituye un método para construir geométricamente los segmentos de longitud . El segmento horizontal inicial es un segmento de longitud igual a la unidad, igual que los segmentos perpendiculares que se van añadiendo. Del teorema de Pitágoras se deduce que la longitud de los segmentos radiales es la indicada: .
No hay constancia de que Teodoro de Cirene dibujara la espiral pero sí se sabe que demostró la irracionalidad de los segmentos de longitudes y la espiral, debido a su simplicidad y belleza, aparece reproducida en numerosos libros de texto. Aquí raíz cuadrada de 3 significa longitud del lado del cuadrado de área 3 e irracionalidad significa inconmensurabilidad de esa longitud del lado con la del lado de un cuadrado de área unidad (inconmensurabilidad = inexistencia de un segmento que sirva de medida común a ambos segmentos). Se desconoce la razón por la que no generalizó el resultado a números mayores y por la que se detuvo en el caso 17. Algunos autores han conjeturado que no quiso continuar porque significaba dar otra vuelta y superponer los dibujos (Paul Nahin: "An Imaginary Tale: The history of ").
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario